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Abstract
Chemical pollutants present a substantial threat to the survival of the green turtle (Chelonia mydas). In this study, the con-
centrations of 12 trace elements (TEs) in seawater, sediments, and green turtle forage and eggshells from the Xisha Islands 
in the South China Sea, along with their patterns of transfer and accumulation, were identified. The results revealed that the 
median TE concentrations in seawater and sediments were lower than the first-grade limit values of the national standard 
in China, indicating a low ecological risk. The concentrations (μg·g−1) of TEs in forage ranged from 0.05–0.69, 3.43–14.4, 
157–2391, 27.9–124, 2.05–9.39, 0.30–9.78, 2.01–80.50, 0.18–5.76, 0.06–0.98, 2.00–18.4, 0.02–0.24, and 0.01–0.09 for Cr, 
Mn, Sr, Fe, Ni, Cu, Zn, Se, Cd, As, Pb, and Hg, respectively. Seawater, sediments, turtle forage, and eggshells exhibited dif-
ferent TE profiles, which were driven by Hg, Sr, Cr, and Pb in seawater and sediments; Fe and Ni in sediments; Cd and As 
in forage; and Zn, Se, and Cu in eggshells. The contents of Cu, Zn, and Se increased slightly with trophic level, indicating 
that they were transferred through dietary pathways. Although Cd and As appeared to bioaccumulate in green turtle forage, 
it was not transferred to their eggshells, which may be related to the excretion and metabolism process in the mother’s body. 
Thus, eggshells may be a poor bioindicator for the exposure of female green turtles to these toxic elements.
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Introduction

Due to population decline, green turtles (Chelonia mydas) 
have been listed as globally endangered species on the Inter-
national Union for Conservation of Nature (IUCN) Red 
List (Seminoff 2004). Among other risks, chemical pollu-
tion poses a substantial threat to the survival of sea turtles. 
Some of trace elements (TEs) with toxic and chronic effects 
threaten the health and survival of marine organisms and 
coastal wetlands. Sea turtles are long-lived vertebrates with 
high fidelity to particular foraging areas; long-term expo-
sure to some TEs (especially heavy metals) may impact their 
health and fecundity (Camacho et al. 2014; Villa et al. 2017).

Adult green turtles inhabit nearshore and inshore neritic 
zones and principally feed on seagrass and macroalgae 
(Bjorndal, 1997). Trace element exposure in sea turtles is 
strongly associated with the specific forage habitat used 
and individual food preferences (Gardner et al. 2006). The 
dietary composition of green turtle depends on the forage 
species present and their physiological stage. In addition 
to seagrass, Rhodophyta, Chlorophyta, and Phaeophyta 
are important dietary items of gravid green turtles (Stokes 
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et al. 2019; Esteban et al. 2020). However, seagrass and mac-
roalgae have the capacity to selectively absorb Zn, Cd, and 
Cu and accumulate them in concentrations up to thousands 
times higher than their respective levels in environmental 
media (Zheng et al. 2018). Moreover, TE accumulation in 
seagrass and macroalgae can vary widely across geographic 
regions (e.g., different pollutant concentrations or back-
ground values) and species (e.g., different uptake capacities 
and retention) (Sánchez-Quiles et al. 2017; Bonanno and 
Orlando-Bonaca, 2018). Therefore, it is important to moni-
tor TE pollution in the forage species and habitat media of 
these endangered animals and to identify bioaccumulation 
patterns.

Recent studies have shown that some TEs (e.g., As or Co) 
levels in sea turtle tissues (e.g., blood and carapaces) are 
consistent with those in their forage (Komoroske et al. 2012; 
Thomas et al. 2020). It is known that female birds and rep-
tiles may eliminate TEs by depositing them into eggs; thus, 
eggs become suitable bioindicators of pollution. In particu-
lar, Cu, Cd, and Pb contents in bird (Corvus frugilegus) 
eggshells are significantly correlated with those of their 
breeding habitat (Orłowski et al. 2016). The eggshells of 
sea turtles are secreted one week before spawning (Miller, 
1985). Thus, eggshells may be a reliable and non-invasive 
indicator of recent pollutant exposure in female sea turtles 
in their breeding habitats.

The South China Sea hosts the largest sea turtle popu-
lation in China, 90% of which are green turtles (Chan 
et al. 2007). In particular, the Xisha Islands are typical tropi-
cal islands that host diverse reef ecosystems and serve as key 
breeding habitats for green turtles (Jia et al. 2019). Some 
studies suggest potential anthropogenic input of various 
TMs (e.g., Pb, Cd, and Hg) to the seawater and coral sands 
in the Xisha Islands (Zhou et al. 2007; Wang et al. 2017). 
To the best of our knowledge, information about TE accu-
mulation in local green turtle forage is lacking. Moreover, 
only Komoroske et al. (2012) used tissue (carapace)–forage 
biological magnification factor to discuss the TEs bioaccu-
mulation patterns in green sea turtle food web. In this study, 
we investigated the concentrations and profiles of TEs in 
seawater, sediments, green turtle forage, and eggshells in the 
Xisha Islands. Using the eggshells of green turtles, we could 
give information the bioaccumulation patterns and transfer 
pathway for a suite of essential and nonessential TEs in the 
food chain of the green turtle.

Materials and methods

Study area

The Xisha Islands (15°47'–17°08'N, 110°10'–112°55'E) 
are located in the South China Sea and comprise over 100 

small coral islands, sandbanks, and reefs. The islands can be 
organized into two groups: the eastern Xuande Archipelago 
and the western Yongle Archipelago. The temperatures vary 
seasonally between 13 °C and 25 °C (Chen et al. 2012). It is 
an important waterway that connects China with the Malay 
Archipelago, Indo-China Peninsula, and Indian Ocean rim 
states. The islands have a complex and unique tropical 
marine ecosystem and serve as a critical habitat for green 
turtles. The Qilianyu cluster in the Xuande Archipelago 
hosts the largest currently known nesting population of 
green turtles in China (Jia et al. 2019).

Sample collection

Surface water and sediments (coral sands) from 38 stations 
were collected from eight islands and sandbanks in the Qil-
ianyu cluster (July − October, 2020), including West Sand 
(n = 4), Zhao Shu Island (inhabited, n = 6), North Island 
(n = 7), Middle Island (n = 6), South Island (n = 6), North 
Sand (n = 3), Middle Sand (n = 3), and South Sand (n = 3) 
(Fig. 1). Coastal surface seawater and sediments were col-
lected at intervals of 100 m in the direction perpendicular 
to the coast. The sample from each station was composed of 
three subsamples. Surface sediments were sampled with a 
stainless steel grab sampler and transferred to airtight poly-
ethylene bags. Seawater was collected using a water sampler 
and stored in a polyethylene plastic bottle. The pH of the 
seawater and sediments (distilled water [mL]–dry sediment 
[g] = 2.5:1) was measured in the laboratory using a pH meter 
(FE28 − Standard, Mettler Toledo, USA). Seawater samples 
were filtered through a 0.45-μm microfiltration membrane 
and treated with concentrated nitric acid to pH < 2. Seawa-
ter samples were preserved in fresh conditions (4 ± 1 °C), 
and sediment samples were frozen (-18 ± 2 °C) until further 
laboratory analysis.

Three samples of the aboveground tissues of forage taxa, 
namely, Caulerpa racemosa, Caulerpa serrulata, Caulerpa 
taxifolia, and Codium fragile (Chlorophyta); Ishige sinicola, 
Colpomenia sinuosa, Padina australis, and Sargassum cras-
sifolium (Phaeophyta); Asparagopsis taxiformis, Hypnea 
pannosa, Ceratodictyon spongiosum, and Turbinaria ornate 
(Rhodophyta); and Thalassia hemprichii (Hydrocharita-
ceae), were randomly collected from the nearshore area of 
the Qilianyu cluster. The thalli and leaves were carefully cut 
with stainless steel scissors, and the weight of the samples 
varied from 0.25 to 1 kg. Post-hatch eggshells were collected 
from 40 nests in the Qilianyu cluster in our previous work 
(Jian et al. 2021). In the laboratory, biological samples were 
washed with ultrapure water to remove any particulate mat-
ter and then closed in hermetic polyethylene plastic bags, 
and frozen (-18 ± 2 °C) until further laboratory analysis. 
All required glassware and plastic materials were soaked in 
dilute nitric acid (1:3) for more than 24 h.

50833Environmental Science and Pollution Research  (2022) 29:50832–50844



TE analysis

In the laboratory, sediment samples were dried naturally 
(3 ~ 5 days) and then ground to < 0.125 mm. Biological sam-
ples were freeze-dried and cut into tiny pieces. The ana-
lytical procedure was similar to that described by Bonanno 
et al. (2020). The resulting dry material was weighed at 
0.25 ± 0.0005 g and processed in an acid solution (8 mL of 
65%  HNO3 and 2 mL of 30%  H2O2). Sample digestion was 
conducted at room temperature (25 ºC) overnight, and the 
samples were then further digested with a microwave diges-
tion instrument (MARS6, CEM Corp., USA). The digestion 
process was as follows: 0–15 min at 120 °C, 15–30 min at 
200 °C, and 30–60 min at 200 °C. The digestion solution 
was evaporated at 95 °C to ~ 1 mL and then diluted to 25 mL 
with ultrapure water for analysis.

Zinc, Fe, Mn, Se, Cr, Cu, Pb, Ni, Cd, and Sr contents were 
measured using inductively coupled plasma–mass spectrom-
etry (ICP-MS, X Series 2, Thermo Fisher Scientific, USA). 
As and Hg were analyzed using atomic fluorescence spec-
trometry (AFS-3000, Beijing Haiguang, China). Ten of the 
TEs in eggshells have been analyzed in our previous study 
(Jian et al. 2021), while Ni and Hg contents were determined 
in the present study. An online injection technique (including 
online dilution and online preconcentration) combined with 
ICP-MS was used to analyze dissolved TEs in seawater sam-
ples (Mu et al. 2015). The detection limits were calculated as 
three times the standard deviation for digestion blanks (sedi-
ments and biological sample) and acid blanks (2%  HNO3, 
seawater) (n > 20). The detection limits of TEs for sediment 

and biological samples were 0.005, 0.005, 0.05, 0.05, 0.002, 
0.01, 0.01, 0.01, 0.001, 0.002, 0.02, and 0.001 μg·g−1 for 
Cr, Mn, Sr, Fe, Ni, Cu, Zn, Se, Cd, Pb, As, and Hg, respec-
tively. The detection limits of TEs for seawater were 0.01, 
0.05, 0.5, 0.5, 0.01, 0.05, 0.1, 0.4, 0.005, 0.003, 0.3, and 
0.01 μg·L−1 for Cr, Mn, Sr, Fe, Ni, Cu, Zn, Se, Cd, Pb, As, 
and Hg, respectively.

Quality control and quality assurance

Quality control and quality assurance procedures for TEs 
in seawater, sediments, and seagrass/algae were estimated 
using duplicate samples, with three replicates for every 12 
samples, blank samples, as well as with standard reference 
materials (SRM–GBW 07,314, offshore marine sediments, 
for sediments; SRM–GBW 080,040, for seawater; and 
SRM–GBW 08,517, standard for compositional analyses of 
kelp, seagrass, and algae). These certified reference materi-
als were provided by the Second Institute of Oceanography 
(Zhejiang, China). For seawater, sediment, and biological 
samples, relative recoveries ranged from 90.4 to 108.9%, 
which was within 10% of the certified values.

Data analysis

The bioaccumulation factor (BAF) and the biological sedi-
ment accumulation factor (BSAF) of green turtle forage are 
calculated to evaluate the concentration of accumulated TEs 
in seagrass and algae samples based on their measured con-
centrations in seawater and sediments:

Fig. 1  Location of the collection site of environmental media, green turtle eggshells and forage from Xisha Islands, China

50834 Environmental Science and Pollution Research  (2022) 29:50832–50844



where Ca,  Cw, and  Cs are the median concentrations of 
TEs in seagrass/algal species, seawater, and sediments, 
respectively.

Statistical calculations were performed using SPSS v. 
23.0 (IBM Corp., USA). Normality of the TE concen-
tration data in the different samples for all stations was 
checked using the Shapiro–Wilk test. Descriptive statis-
tics, including median, maximum, minimum, and relative 
standard deviation (RSD), were used to report the amount 
of TEs in seawater, sediment, and seagrass/algae. Data of 
TE concentrations in eggshells from our previous studies 
(Jian et al. 2021) were used to analyze TE transfer. Non-
parametric tests of multiple independent samples (Jonck-
heere–Terpstra) were used to analyze the differences in 
TE concentrations among the marine macrophytes. Spear-
man correlation analysis was also conducted to determine 
the relationships among the elemental concentrations in 
the sediments, and correlations were considered statisti-
cally significant if p < 0.05. Principal component analysis 
(PCA) was used to explore the relationships among the 
concentrations of TEs in seawater, sediments, and the for-
age and eggshells of green turtles.

(1)BAF =

C
a

C
w

(2)BSAF =

C
a

C
s

Results

TE concentrations in seawater and sediment

The median concentrations (μg·L−1) of the 12 TEs in surface 
seawater decreased in the following order: Sr (5520) > Fe 
(6.70) ≈ Zn (6.65) > Mn (1.91) > As (1.51) > Se (1.06) > Cr 
(0.77) > Cu (0.63) > Pb (0.36) > Ni (0.34) > Cd (0.05) > Hg 
(0.03) (Table 1). The median concentrations of TEs in sea-
water were lower than the first-grade limit values of the GB 
(3097–1997) national standard in China (SEPA, 1997) and 
the biological chronic toxicity criteria of heavy metals in 
seawater used by the United States National Oceanic and 
Atmospheric Administration (Buchman 2008) (Table 1). 
However, the concentration of Zn at one of the sampling 
sites in West Sand and those of Pb and Hg at two sam-
pling sites in South Sand slightly exceeded the first-grade 
limit values (20.0, 1.0, and 0.05 μg·L−1 for Zn, Pb, and Hg, 
respectively). In addition, the median concentrations of Zn, 
Pb, and Cu in seawater almost reached 10–80 times the back-
ground values (BV) in the South China Sea (Yu, 2003) and 
exhibited greater variability, indicating that these elements 
were affected by human inputs.

The median concentrations (μg·g−1) of TEs in the 
sediments were in the order Sr (4680) > Fe (75.0) > Ni 
(0.34) > Mn (1.91) > Zn (6.65) > Cr (0.77) > Pb (0.36) > As 
(0.66) > Cu (0.63) > Se (0.16) > Cd (0.07) > Hg (0.05) 
(Table 1). The median concentrations of Cr, Ni, Cu, Zn, Cd, 
As, Pb, and Hg in sediments were lower than the first-grade 
limit values of the GB (18,668–2002) national standard in 

Table 1  Trace element concentrations in seawater and sediments 
from Qilianyu cluster. Min minimum value, max maximum value, 
median the median concentration, RSD relative standard deviation, 
BV background value, NA no data, SWQ-1 sea water quality of pri-
mary standard criteria (GB 3097–1997), MSQ-1 marine sediment 

quality of primary standard criteria (GB 18,668–2002), respectively. 
CTC is the biological chronic toxicity criteria of heavy metals in 
seawater used by National Oceanic and Atmospheric Administration 
(NOAA), and TEL is the threshold effect levels of heavy metals in 
sediment used by NOAA

TE Cr Mn Sr Fe Ni Cu Zn Se Cd As Pb Hg

Seawater (μg·L−1) Min 0.18 0.95 4848 0.70 0.15 0.40 2.21 0.59 0.01 1.17 0.05 0.03
Max 2.84 5.93 5725 20.8 0.70 5.66 26.6 1.34 0.07 3.64 4.34 0.09
Median 0.77 1.91 5520 6.70 0.34 0.63 6.65 1.06 0.05 1.51 0.36 0.03
RSD/% 59.2 46.3 3.98 66.7 38.6 102 61.1 25.0 46.2 24.9 132 37.1
BV NA NA NA NA NA 0.08 0.08 NA 0.004 NA 0.05 NA
SWQ–1  ≤ 50.0 NA NA NA  ≤ 5.0  ≤ 5.0  ≤ 20.0 NA  ≤ 1.0  ≤ 20.0  ≤ 1.0  ≤ 0.05
CTC 50 NA NA NA 8.2 3.1 81 71 9.3 36 8.1 0.94

Sediments (μg·g−1) Min 0.89 4.49 3699 61.1 6.35 0.14 0.80 0.07 0.02 0.39 0.35 0.01
Max 2.24 20.3 5804 143 9.28 2.19 4.86 0.35 0.39 1.60 1.12 0.16
Median 1.43 6.91 4860 75.0 7.60 0.28 2.16 0.16 0.07 0.66 0.72 0.05
RSD/% 20.8 38.5 8.11 25.2 9.2 92.7 43.9 33.7 72.0 35.8 27.2 64.6
BV 39.3 NA NA NA NA 7.43 54.4 NA 0.18 9.71 15.6 0.02
MSQ–1  ≤ 80.0 NA NA NA NA  ≤ 35.0  ≤ 150 NA  ≤ 0.50  ≤ 20.0  ≤ 60.0  ≤ 0.20
TEL 52.3 NA NA NA 15.9 18.7 124 NA 0.676 7.24 30.24 0.13
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China (SEPA, 2002) and the threshold effect levels used by 
Buchman (2008), thereby indicating a low ecological risk. 
However, the concentrations of Cd in sediments at two sam-
pling sites and those of Hg in sediments at 80% of the sam-
pling sites were 2 ~ 8 times higher than the BV (shelf area 
of South China Sea sediment) and exhibited greater vari-
ability. Copper and Zn concentrations were also more vari-
able in the sediment samples (RSD > 36%), and there was 
a significant association between these elements (r = 0.38, 
p < 0.05). Large RSD values generally indicate artificial 
sources (Zhang et al. 2019). Boats always have Cu-based 
antifouling paints, and Zn-based sacrificial anodes may serve 
as artificial sources of Cu and Zn (Egardt et al. 2018).

TEs in seagrass and algae

The median concentrations (μg·g−1) of the 12 TEs in 
seagrass and algae decreased in the following order: Sr 
(1248) > Fe (68.0) > Zn (13.6) > Mn (6.24) > As (5.95) > Ni 
(5.31) > Cu (1.41) > Se (0.72) > Cd (0.33) > Cr (0.25) > Pb 
(0.10) > Hg (0.01) (Table 2). Apart from Sr, Fe, Zn, and Mn 
were the most abundant elements in all seagrass and algae 
samples, suggesting their important roles in plant metabo-
lism. Meanwhile, less Cr, Cd, Pb, and Hg accumulated in 
these samples. Compared with other sea turtle habitats 
worldwide, the concentrations of Cr, Mn, Fe, and Pb in sea-
grass and algae from the Xisha Islands were considerably 
lower (10‒76x, 4‒12x, 7‒30x, and 37‒289x, respectively), 
while those of Cu, Zn, As, and Cd were essentially in the 
same range (Çelik et al. 2006; Lewis et al. 2007; Riosmena-
Rodríguez et al. 2010; Sánchez-Quiles et al. 2017; Thomas 
et al. 2020) (Table 2).

Trace element concentrations in seagrass and algae 
from the Xisha Islands are shown in Fig. 2. The highest 
median concentrations of Mn, Fe, Zn, Ni, Se, and Cd were 
observed in rhodophytes, but only Se differed significantly 
(p < 0.05) from the other clades. The highest concentrations 
of Fe, As, Pb, and Cr were observed in Phaeophyta, and the 
median contents of Cr in this clade were significantly higher 
(p < 0.05) than those in seagrass and chlorophytes. The high-
est median As concentrations were observed in chlorophytes, 
although they did not differ significantly from those found in 
other clades. The median concentrations of Cu in seagrass 
and rhodophytes were higher than those in other algae, and 
the Sr contents in seagrass and Phaeophyta were higher than 
in other clades.

Distribution of TEs in algae, seawater, sediments, 
and green turtle eggshells

Trace element concentrations in sea turtle tissues depend on 
their diet and feeding area (Gardner et al. 2006). Therefore, 
we compared TE concentrations in the eggshells of green 

turtles to those in environmental media, seagrass, and algae, 
and PCA was used to investigate their distributions (Fig. 3). 
The  Log10-transformed concentrations of TEs in seawater, 
sediments, and seagrass/macroalgae are shown in Fig. 4, 
together with those from green turtle eggshells previously 
reported by Jian et al. (2021).

The PCA results showed that 12 TEs were reduced to 
three dimensions (PC1, PC2, and PC3), which collectively 
explained 87.1% of the total variation (Fig. 3). The element 
cluster with high-representation element Sr (loading = 0.56) 
along PC1 explained 61.0% of the total variation, Fe and 
Ni (loadings: Fe = 0.46, Ni = 0.58) together along PC2 
explained 15.7% of the total variation, and Cd and As along 
PC3 (loading > 0.5), explained 10.1% of the total variation, 
suggesting that these TEs strongly influenced each respec-
tive component. A scale 3 correlation biplot was used to 
separate the 12 TEs into four clusters of strongly correlated 
elements. Seawater and sediment TE profiles differed from 
those of seagrass and algae. Additionally, the TE profile of 
green turtle eggshells differed from the sediment profile. 
Iron and Ni clusters were more closely associated with sedi-
ments, while Cu, Zn, and Se were closely associated with 
eggshells.

Overall, TE bioaccumulation in seagrass/algae did not 
uniformly correspond to their enrichment in the surrounding 
media. Boxplots confirmed that Cr, Sr, Pb, and Hg levels in 
seagrass and algae were lower than those in the surrounding 
seawater and sediments, and both the BAF and BSAF of the 
seagrass and algae for Cr, Sr, Pb, and Hg were < 1, indicat-
ing that these elements were confined to the seawater and 
sediments, and transfer to the biosphere was not observed 
(Table 3). The BSAF values of seagrass and algae for Fe, 
Ni, and Mn were also < 1, whereas the BAF value for Fe, Ni, 
and Mn were 8.58, 15.6, and 3.27, respectively, indicating 
bioaccumulation from seawater. Furthermore, the Cu, Zn, 
As, and Cd concentrations in seagrass and algae were higher 
than those in seawater and sediments, and both the BAF 
and BSAF of seagrass and algae for these elements ranged 
from 1.31 to 18.9, indicating bioaccumulation. Specifically, 
the BSAF of seagrass for Cu and the BSAF of rhodophytes 
for Zn, Se, and Cd were greater than ~ 10, indicating strong 
bioaccumulation.

The concentrations of Cr, Zn, Se, and Cu in green tur-
tle eggshells were higher than those of seagrass and algae 
(3.4-fold for Cr, 1.5-fold for Zn, 3.4-fold for Se, 9.1-fold 
for Cu) (Fig. 3), indicating that female turtles possibly 
bioaccumulate these elements via forage and then trans-
fer them to their offspring. Meanwhile, the Mn, Fe, Ni, 
Sr, Cd, and As contents in green turtle eggshells were 
43–74-fold lower than those in seagrass and algae. Over-
all, we did not observe strong biomagnification for most 
of the TEs through eggshells. In particular, the contents 
of essential elements (Cu, Zn, and Se) increased slightly 
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Table 2  Trace elements concentrations in seagrass and algae samples 
from this study compared to seagrass and algae metal concentrations 
reported from other regions and global literature (μg·g−1, dry weight). 
aMedian (min–max value); bmean ± SD; cRang; d0.2-truncated mean. 

nd is not detected. Chl Chlorophyta, Rho Rhodophyta, Pha Phaeo-
phyta. HWK is Howicks in Queensland, Australia; UPS is Upstart 
Bay in Queensland, Australia

TE Location Seagrass Chl Rho Pha Total Reference

Cr Xisha Islands, 
 Chinaa

0.25 (0.18‒0.32) 0.30 (0.05‒0.32) 0.43 (0.42‒0.55) 0.48 (0.22‒0.69) 0.25 (0.05‒0.69) Present study

Queensland, 
 Australiab

5.42 ± 1.88 NA NA NA NA Thomas et al. 2020

Mersin,  Turkeyb 22.9 ± 0.14 20.4 ± 0.11 Çelik et al. 2006
Florida,  USAb 0.70 ± 1.1 Lewis et al. 2007
Mediterraneanc 0.01‒123 0.31‒104 0.17‒26 0.07‒82.8 Bonanno and 

Orlando-Bonaca, 
2018

Globald 3.2 2.73 1.29 2.51 2.33 Sánchez-Quiles 
et al. 2017

Mn Xisha Islands, 
 Chinaa

6.24 (6.21‒14.4) 3.67 (3.51‒5.78) 6.86 (6.81‒14.3) 5.22 (3.43‒7.86) 6.24 (3.43‒14.4) Present study

Queensland, 
 Australiab

35.0 ± 7.67 Thomas et al. 2020

Baja California, 
Méxicoc

33.9‒78.6 7.30‒61.4 10.5‒61.4 Riosmena-Rod-
ríguez et al. 2010

Mediterraneanc 4.22‒1600 6.30‒416 5.60‒475 7.89‒757 Bonanno and 
Orlando-Bonaca, 
2018

Globald 25.0 93.1 35.6 71.7 55.9 Sánchez-Quiles 
et al. 2017

Fe Xisha Islands, 
 Chinaa

57.5 (49.3‒68.0) 75.6 (69.2‒115) 81.9 (61‒102) 45.5 (27.9‒124) 68.0 (27.9‒124) This study

Queensland, 
 Australiab

1700 ± 827 Thomas et al. 2020

Mersin,  Turkeyb 129 ± 26.2 Çelik et al. 2006
Baja California, 

Méxicoc
51.1‒630 224‒524 142‒772 Riosmena-Rod-

ríguez et al. 2010
Globald 412 487 293 382 422 Sánchez-Quiles 

et al. 2017
Ni Xisha Islands, 

 Chinaa
6.12 (4.97‒8.59) 2.10 (2.10‒2.20) 7.10 (6.61‒9.39) 5.26 (2.11‒8.11) 5.31 (2.05‒9.39) Present study

Queensland, 
 Australiab

3.04 ± 0.90 Thomas et al. 2020

Mersin,  Turkeyb 23.8 ± 0.22 21.8 ± 0.12 Çelik et al. 2006
Baja California, 

Méxicoc
2.80‒3.10 1.80‒7.90 1.10‒11.0 Riosmena-Rod-

ríguez et al. 2010
Florida, USA  < 3.50 Lewis et al. 2007
Mediterraneanb 0.20‒123 0.54‒32.0 0.33‒52.6 0.63‒50.5 Bonanno and 

Orlando-Bonaca, 
2018

Globald 6.44 4.27 3.41 6.31 5.13 Sánchez-Quiles 
et al. 2017
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Table 2  (continued)

TE Location Seagrass Chl Rho Pha Total Reference

Cu Xisha Islands, 
 Chinaa

4.58 (2.91‒4.93) 0.99 (0.88‒1.40) 4.38 (1.41‒9.78) 0.99 (0.30‒2.51) 1.41 (0.30‒9.78) Present study

Queensland, 
 Australiab

2.47 ± 3.30 Thomas et al. 2020

Mersin,  Turkeyb 4.52 ± 1.01 4.92 ± 0.25 Çelik et al. 2006

Baja California, 
Méxicoc

0.40‒1.60 1.00‒7.30 0.50‒2.60 Riosmena-Rod-
ríguez et al. 2010

Florida,  USAc 5.00‒20.5 Lewis et al. 2007

Mediterraneanc 0.19‒148 0.45‒253 0.35‒45.2 1.00‒103 Bonanno and 
Orlando-Bonaca, 
2018

Globald 9.88 7.67 5.19 6.93 7.94 Sánchez-Quiles 
et al. 2017

Zn Xisha Islands, 
 Chinaa

15.3 (14.5‒20.0) 15.1 (8.40‒19.3) 37.6 (13.6‒80.5) 8.70 (2.01‒26.7) 13.6 (2.01‒80.5) Present study

Baja California, 
Méxicoc

13.5‒16.5 5.70‒14.2 6.40‒13.4 Riosmena-Rod-
ríguez et al. 2010

Florida,  USAc 3.40‒7.30 Lewis et al. 2007
Mediterraneanc 5.00‒787 2.81‒369 0.14‒248 1.60‒780 Bonanno and 

Orlando-Bonaca, 
2018

Globald 39.6 37.7 29.8 58.9 40.5 Sánchez-Quiles 
et al. 2017

Se Xisha Islands, 
 Chinaa

0.41(0.41‒0.55) 0.47(0.18‒0.72) 3.02(2.07‒5.76) 0.98(0.29‒3.46) 0.72(0.18‒5.76) Present Study

Black Sea 
(Turkey)c

0.02‒0.69 0.01‒0.25 0.03‒0.09 Tuzen et al. 2009

Cd Xisha Islands, 
 Chinaa

0.35 (0.25‒0.53) 0.33 (0.32‒0.70) 0.81 (0.67‒0.98) 0.18 (0.06‒0.94) 0.33 (0.06‒0.98) Present study

Queensland, 
 Australiab

0.20 ± 0.07 Thomas et al. 2020

Mersin,  Turkeyb 1.40 ± 0.09 1.31 ± 0.07 Çelik et al. 2006
Baja California, 

Méxicoc
nd‒2.20 1.20‒2.30 1.90‒4.80 Riosmena-Rod-

ríguez et al. 2010
Mediterraneanc 0.01‒85.7 0.01‒31.5 0.02‒31.0 0.01‒16.9 Bonanno and 

Orlando-Bonaca, 
2018

Globald 0.99 0.49 0.59 1.13 0.83 Sánchez-Quiles 
et al. 2017

Sr Xisha Islands, 
 Chinaa

1760 (403‒2391) 680 (192‒1523) 657 (157‒1108) 1685 (1248‒2049) 1248 (157‒2391) Present study

Queensland 
(HWK)b

3208 ± 658 Thomas et al. 2020

Queensland 
(UPS)b

315 ± 142

50838 Environmental Science and Pollution Research  (2022) 29:50832–50844



with trophic level, indicating trophic transfer, especially 
for Cu. Notably, the nonessential elements Cd and As 
accumulated at high concentrations (As, 5.95 μg·g−1; 
Cd, 0.33 μg·g−1) in seagrass and algae but were present 
at low levels in green turtle eggshells (As, 0.07 μg·g−1; 

Cd, 0.01 μg·g−1), indicating that these elements are not 
effectively transferred through food or from mothers to 
eggshells.

Table 2  (continued)

TE Location Seagrass Chl Rho Pha Total Reference

As Xisha Islands, 
 Chinaa

5.12 (5.00‒6.86) 6.84 (6.65‒8.87) 5.95 (5.75‒14.1) 4.94 (3.89‒18.4) 5.95 (2.00‒18.4) Present study

Queensland, 
 Australiab

5.97 ± 5.81 Thomas et al. 2020

Mediterraneanb 0.31‒34.8 0.10‒23.0 0.84‒31.0 0.80‒242 Bonanno and 
Orlando-Bonaca, 
2018

Globald 9.16 8.94 10.5 38 15.2 Sánchez-Quiles 
et al. 2017

Pb Xisha Islands, 
 Chinaa

0.03 (0.02‒0.10) 0.09 (0.08‒0.09) 0.15 (0.10‒0.17) 0.16 (0.06‒0.24) 0.10 (0.02‒0.24) Present study

Queensland, 
 Australiab

1.12 ± 0.33 Thomas et al. 2020

Baja California, 
Méxicob

nd‒2.5 nd‒0.7 nd‒0.6 Riosmena-Rod-
ríguez et al. 2010

Mersin,  Turkeyb 8.67 ± 0.64 6.26 ± 0.68 Çelik et al. 2006
Mediterraneanc 0.03‒900 0.01‒737 0.01‒878 0.01‒617 Bonanno and 

Orlando-Bonaca, 
2018

Globald 5.11 6.02 3.16 5.91 5.27 Sánchez-Quiles 
et al. 2017

Hg Xisha Islands, 
 Chinaa

0.02 (0.01–0.02) 0.02 (0.01‒0.02) 0.01 (0.01‒0.09) 0.01 (0.01‒0.03) 0.01 (0.01‒0.09) Present study

Mediterraneanc 0.01‒1.28 0.05‒26.1 0.04‒0.11 0.04‒0.27 Bonanno and 
Orlando-Bonaca, 
2018

Globald 0.05 0.10 0.09 0.07 0.06 Sánchez-Quiles 
et al. 2017
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Fig. 2  Trace element concentration in seagrass and algae. Sr is 
expressed as a log 10 value. Seagrass and algae are marked by color; 
seagrass = bottle green; Chlorophyta = Light green; Rhodophyta = red; 
Phaeophyta = brown. The boundary of the box closest to zero indi-

cates the 25th percentile, a black line within the box marks the 
median, and the boundary of the box farthest from zero indicates the 
75th percentile
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Discussion

TE transfer to primary producers

Significant interspecific differences in the accumulation of 
TEs in algae within the same region could be attributed to 
internal factors, such as different uptake capacities and reten-
tion (Farías et al. 2007). In this study, rhodophyte species 
accumulated more Se than phaeophytes and Chlorophyte 
taxa (p < 0.05), which is consistent with the findings of 
Maher et al. (1992). Marine algae take up and bioaccumu-
late selenate from seawater as a sulfur analog, and Phae-
ophyta typically contain smaller amounts of amino acids 
and proteins than Rhodophyta (Vriens et al. 2016). High 
TE concentrations in Phaeophyta have been related to cell 
wall polysaccharide alginate, which exhibits a high chelating 
action for free metal cations (Sánchez-Quiles et al. 2017). In 
the Xisha Islands, we found higher concentrations of Fe, As, 
Pb, Cr, and Sr reported for Phaeophyta (especially in Ishige 
sinicola) as compared to the other clades, while there was 
only a significant difference for Cr contents (p < 0.05). Over-
all, most of the TEs were not significantly different among 
the four species of algae in the Xisha Islands, which may be 
related to intraspecific difference. In general, intraspecific 
variations in TE composition may be related to differences 
in biochemical composition, thallus morphology, and growth 
strategy (Malea and Kavrekidis 2014).

The bioaccumulation of TEs is likely related to their 
availability in the surrounding media. Dissolved TEs in 

Fig. 3  The relative variation biplot for seagrass/algae, seawater, sedi-
ments, and green turtle eggshells. The data of Ni and Hg is from pre-
sent study; other TMs are from Jian et al. (2021). Different samples 
are marked by color; seagrass and algae = black; green turtle egg-
shells = red; seawater = green; sediments = blue. PC1 explains most 
(61.0%) of the total variation; PC2 and PC3 explain 15.7% and 10.4% 
of the total variation
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Fig.4  Boxplots of log10-transformed TEs concentrations in sea-
grass/algae, seawater, sediments, and eggshells. Different samples 
are marked by color; seagrass and algae = green; green turtle egg-
shells = yellow; seawater = blue; sediment = gray. The boundary of the 
box closest to zero indicates the 25th percentile, a black line within 

the box marks the median, and the boundary of the box farthest from 
zero indicates the 75th percentile. The black line above and below the 
box indicates “minimum” and “maximum.” Asterisk above and below 
the box indicate outliers
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seawater are most easily accessible to living organisms, 
including algae. Studies have shown that seagrass can 
absorb dissolved TEs (e.g., Zn, Cd, Cu, and Mn) from the 
surrounding water and store it in their tissues, especially in 
their blades (Li and Huang, 2012). It has also been demon-
strated that macroalgae (Phaeophyta and Rhodophyta) can 
take up and bioaccumulate arsenate and Se from surround-
ing seawater (Farías et al. 2007; Schiavon et al. 2017). In 
this study, the relatively high concentrations of Zn, Cu, As, 
and Se in seawater and BSAF values < 1 for these elements 
in seagrass and algae indicate that seagrass and algae may 
absorb dissolved TEs from seawater.

The bioavailability and mobility of TEs in sediments 
depend on their chemical speciation, which is controlled 
by several physicochemical factors, such as pH, the reduc-
tion–oxidation potential, and organic matter (OM) content 
(Stumm and Morgan, 1995). The pH values of seawa-
ter (8.08 − 8.28) and sediments (7.43 − 7.97) in the Xisha 
Islands ranged from neutral to weakly alkaline. Under 
alkaline or near-neutral and oxidizing conditions, Fe and 
Mn are present as insoluble ferric  (Fe3+) and manganic 
 (Mn4+) oxides and hydroxides (Stumm and Morgan, 1995). 
These hydroxides further coprecipitate metal ions (e.g., Zn 
and Cd), and thus, their availability decreases. This may 
explain why the BSAF values of seagrass/algae for Fe and 
Mn were < 1, and a significant relationship was observed 
between Cd and Mn (r = 0.506, p < 0.01, n = 38) and between 
Zn and Fe (r = 0.324, p < 0.05, n = 38) in the sediment. Addi-
tionally, TEs adsorbed on the negatively charged sites of 
clays and OM are more exchangeable (Stumm and Morgan, 
1995), and Cu can easily form complexes with OM because 
of the high stability constant of organic Cu compounds 
(Stumm and Morgan, 1995).

Trace elements are bound within the crystalline lattices 
of primary and secondary minerals, which are not nor-
mally accessible. The average TE contents (e.g., Cr, Ni, and 

Pb) in sediments from the Xisha Islands were lower than 
the sediment quality guidelines, with a small RSD. Thus, 
these elements may be derived from a natural source, as 
TEs from natural minerals tend to be retained in residual 
sediments and exhibit low mobility (Stumm and Morgan, 
1995). Strontium exhibited comparatively low BAF and 
BSAF values in seagrass and algae, but a high total con-
tent, which corresponds to the results of previous reports 
(Malea and Kavrekidis 2014). Because Sr is an alkali metal 
that participates during metabolic processes with Ca (Moi-
seenko et al. 2008), it is typically enriched in carbonate 
environments containing aragonitic organisms, such as car-
bonate-accumulating seagrass (e.g., Thalassia testudinum) 
(Enriquez and Schubert, 2014).

TE transfer to green turtle eggshells

Zn, Cu, and Se are essential for the normal growth and 
metabolism of living cells and are present at higher quanti-
ties in female sea turtle blood compared to nonessential ele-
ments (Cd, Hg, and Pb) (Sinaei and Bolouki, 2017). These 
essential elements (with higher maternal transfer rates) are 
easily transferred from female sea turtles to their eggs (Páez-
Osuna et al. 2010). In this study, we found that the contents 
of essential elements (Cu, Zn, and Se) in eggshells were rela-
tively higher than those in seagrass/algae; especially, the Cu 
content in eggshells was approximately 10x higher than that 
in forage. Generally, the Cu content has been reported to be 
higher in eggshells than in albumen and yolk (Páez-Osuna 
et al. 2010). Additionally, we previously demonstrated that 
Cu concentrations in green turtle eggshells from Xisha 
islands exceeded the toxic reference value for bird eggs and 
Se concentrations were between the worst- and best-case 
scenario hazard quotients (Jian et al. 2021). Notably, females 
may accumulate Cu and Se through forage, and eggshell 
formation is a pathway for the discharge of these elements.

Table 3  The bioaccumulation 
factors and biological sediment 
accumulation factors of TEs in 
seagrass and algae

TE BAF BSAF

Seagrass Chl Rho Pha Total Seagrass Chl Rho Pha Total

Cr 0.32 0.39 0.56 0.62 0.32 0.17 0.21 0.30 0.34 0.17
Mn 3.27 1.92 3.59 2.73 3.27 0.90 0.53 0.99 0.76 0.90
Sr 0.32 0.12 0.12 0.31 0.23 0.36 0.14 0.14 0.35 0.26
Fe 8.58 8.58 8.58 8.58 8.58 0.77 1.01 1.09 0.61 0.91
Ni 18.0 6.18 20.9 15.5 15.6 0.60 0.13 0.58 0.13 0.19
Cu 7.27 1.57 6.95 1.57 2.24 16.4 3.54 15.6 3.54 5.04
Zn 2.30 2.27 5.65 1.31 2.05 7.08 6.99 17.4 4.03 6.30
Se 0.39 0.44 2.85 0.92 0.68 2.56 2.94 18.9 6.13 4.50
Cd 7.00 6.60 16.2 3.60 6.60 5.00 4.71 11.6 2.57 4.71
As 3.39 4.53 3.94 3.27 3.94 7.76 10.4 9.02 7.48 9.02
Pb 0.08 0.25 0.42 0.44 0.28 0.04 0.13 0.21 0.22 0.14
Hg 0.67 0.67 0.33 0.33 0.33 0.40 0.40 0.20 0.20 0.20
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Although As may be an essential element for life, no 
definitive data are available on its importance for biologi-
cal systems (Kunito et al. 2008), and Cd is a nonessential 
element. Despite the high burden of As and Cd in seagrass 
and macroalgae, As and Cd contents were found to be low 
in green turtle eggshells in this study. Marine algae contain 
As primarily as arsenosugars, whereas the livers of green 
turtles primarily contain As as arsenobetaine (AB) and a 
small percentage of dimethylarsinic acid (DMA(V)) (Kunito 
et al. 2008). Both AB and DMA(V), which are converted 
from arsenosugars, have short biological half-lives (Kunito 
et al. 2008), and the lack of an effective trophic As transfer 
was observed in other lower trophic-level marine animals 
(Signa et al. 2017). Although Cd can be efficiently trans-
ferred and biomagnified in invertebrates at contaminated 
sites (Signa et al. 2017), little bioaccumulation of Cd was 
observed in green turtle eggshells in this study. Generally, 
Cd accumulates in the kidneys and livers of sea turtles 
(Cortés-Gómez et al. 2017). Studies have shown that even 
a high Cd in the diet results in low blood concentrations 
in freshwater turtles (Trachemys scripta elegans) (Guirlet 
and Das, 2012). Moreover, egg-laying may not be the main 
method for sea turtles to exude harmful elements, such as Cd 
(Páez-Osuna et al., 2010), which suggests that Cd toxicity 
in green turtles may be prevented by excretory mechanisms. 
Thus, eggshells may be a poor bioindicator for some harmful 
elements with low maternal transfer rates (e.g., Cd).

No significant bioaccumulation of Pb and Hg was 
observed in the eggshells of green turtles in this study. The 
average content of Pb in eggshells (0.09 μg·g−1, wet.wt, Jian 
et al. 2021) was less than the worst-case scenario hazard 
quotients (0.12 μg·g−1, wet.wt). There are two explana-
tions for the low values. First, the Pb and Hg contents in the 
seawater and sediments were low. Second, the concentra-
tions of TEs in seagrass and algae reflect TEs availability 
in the surrounding media (Rai et al. 1981). In particular, 
the BAF and BSAF of forage for Hg and Pb were < 1, and 
therefore, we assumed that Pb and Hg were unavailable in 
the environment.

Conclusions

In this study, we described the concentrations of 12 TEs in 
the seawater, coral sands, seagrass, and algae from the Xisha 
Islands, South China Sea. Overall, the TEs in seawater and 
coral sands had low ecological risks. The concentrations of 
most TEs in seagrass and algae were considerably lower 
than the global mean values and those at other sea turtle 
habitats, whereas the Cu, Zn, As, Se, and Cd concentra-
tions were similar. The concentrations of Hg, Pb, and Cr in 
environmental media were higher than those in seagrass/
algae and eggshells, indicating that their biological transfer 

was limited, which appears to be influenced by the metal-
specific bioavailability in coral reef ecosystems. In particu-
lar, we found that the bioaccumulation of TEs, especially 
the essential elements (e.g., Cu, Se, and Zn) in green turtle 
eggshells, corresponded well with the accumulation of these 
elements in forage, indicating that these elements are effec-
tively transferred through forage, and then further from the 
mother to eggshells. Although the nonessential elements Cd 
and As accumulated at high concentrations in seagrass and 
algae, they were present at low levels in green turtle egg-
shells. Thus, eggshells may be a poor bioindicator for the 
exposure of female green turtles to this toxic element. As a 
non-invasive indicator, eggshells are good bioindicators for 
the exposure of female turtles to essential elements (e.g., 
Cu, Se, and Zn), while they cannot reflect the exposure to 
some toxic elements (e.g., As and Cd) via forage because 
the maternal transfer rates of these elements are limited, and 
bioaccumulation may be tissue- or organ-specific (e.g., liver 
or kidney). Further investigation is needed to explore these 
relationships using multiple approaches.
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